Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 255: 121535, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564890

RESUMO

The fluctuating characteristics of rural sewage flow pose a significant challenge for wastewater treatment plants, leading to poor effluent quality. This study establishes a novel adaptive activated sludge (AAS) process specifically designed to address this challenge. By dynamically adjusting to fluctuating water flow in situ, the AAS maintains system stability and promotes efficient pollutant removal. The core strategy of AAS leverages the inherent dissolved oxygen (DO) variations caused by flow fluctuations to establish an alternating anoxic-aerobic environment within the system. This alternating operation mode fosters the growth of aerobic denitrifiers, enabling the simultaneous nitrification and denitrification (SND) process. Over a 284-day operational period, the AAS achieved consistently high removal efficiencies, reaching 94 % for COD and 62.8 % for TN. Metagenomics sequencing revealed HN-AD bacteria as the dominant population, with the characteristic nap gene exhibiting a high relative abundance of 0.008 %, 0.010 %, 0.014 %, and 0.015 % in the anaerobic, anoxic, dynamic, and oxic zones, respectively. Overall, the AAS process demonstrates efficient pollutant removal and low-carbon treatment of rural sewage by transforming the disadvantage of flow fluctuation into an advantage for robust DO regulation. Thus, AAS offers a promising model for SND in rural sewage treatment.

2.
J Hazard Mater ; 470: 134304, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615650

RESUMO

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Assuntos
Benzopiranos , Chlorella vulgaris , Cromo , Microalgas , Peso Molecular , Poluentes Químicos da Água , Cromo/metabolismo , Cromo/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Benzopiranos/química , Benzopiranos/metabolismo
3.
Bioresour Technol ; 393: 129976, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972901

RESUMO

The unstable operation and poor effluent quality often associated with decentralized sewage treatment systems due to fluctuating water flows have garnered significant attention. In this study, a novel integrated process combining anoxic denitrification and simultaneous nitrification and denitrification was developed to address these challenges. The improved anaerobic-anoxic-aerobic system achieved average effluent concentrations of 20.83 mg/L and 4.63 mg/L for chemical oxygen demand and NH4+-N, with average removal rates of 91 % and 68 %, respectively. Moreover, the aerobic zone demonstrated an impressive efficiency of 40.8 % for simultaneous nitrification and denitrification. The key bacteria groups driving the system's performance were heterotrophic and aerobic nitrifying bacteria, which dominated the microbial populations. Overall, the system optimizes the traditional anaerobic-anoxic-aerobic process, providing an effective solution for fluctuating wastewater flows. It establishes a successful coexistence model for multiple microbial populations, highlighting its applicability for superior nitrogen removal performance, and reference for optimizing rural sewage treatment. TAKE HOME MESSAGE SENTENCE: The improved anaerobic-anoxic-aerobic system for fluctuating wastewater treatment has superior nitrogen removal performance depending on multiple microbial populations.


Assuntos
Desnitrificação , Esgotos , Esgotos/microbiologia , Anaerobiose , Nitrogênio , Águas Residuárias , Nitrificação , Bactérias Aeróbias , Reatores Biológicos/microbiologia
4.
Sci Total Environ ; 912: 168784, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000760

RESUMO

The development of rainwater utilization strategies has relied on rainwater harvesting (RWH) systems for centuries to alleviate the pressure on water resources. However, there are still significant knowledge gaps regarding the changes in water quality in RWH systems during long-term storage in non-rainy seasons. This study evaluated the water quality processes in RWH systems through static rainwater storage experiments for approximately 60 days. The results revealed that nutrients in rainwater accumulated in sediment during storage. Disturbance and redox conditions at the rainwater-sediment interface contribute to the release of sedimentary facies materials. The rainwater showed distinct DO stratification, with the biochemical reactions of sedimentary facies being the primary factor driving oxygen consumption. ORP and turbidity showed positive correlations with COD (r = 0.582; 0.572), TOC (r = 0.678; 0.681), TN (r = 0.452; 0.439), and NH4+-N (r = 0.502; 0.553) (P < 0.05). The regulation of water quality and extension of the usage cycle were identified as critical factors influenced by DO. In addition, bacteria share similar ecological niche preferences. These findings provide scientific evidence for the high-quality reuse of rainwater in decentralized RWH systems during long-term storage in non-rainy seasons.

5.
J Environ Manage ; 350: 119640, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029499

RESUMO

The proposal of the dual carbon goal and the blue economy in China has sparked a keen interest in carbon emissions reduction from sewage treatment. Carbon accounting in urban sewage plants serves as the foundation for carbon emission reduction in sewage treatment. This paper re-evaluated carbon accounting in the operational processes for urban sewage treatment plants to develop a novel carbon emission evaluation model for anaerobic-anoxic-oxic treatment plants. The results show that the carbon emissions generated by non-carbon dioxide gases far exceed the carbon emissions from carbon dioxide alone. Moreover, the recycling of sewage leads to carbon emissions reduction that offsets the carbon emissions generated during the operation of the sewage plant. Also, the carbon emissions generated by sewage treatment plants are lower than those generated by untreated sewage. The findings and insights provided in this paper provide valuable references for carbon accounting and the implementation of low-carbon practices in urban sewage treatment plants.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Dióxido de Carbono/análise , Reciclagem
6.
Bioresour Technol ; 388: 129773, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722547

RESUMO

This study explored the mechanisms by which biochar mitigates ammonia inhibition in anaerobic digestion (AD) of swine manure. Findings show 2-8 g/L exogenous ammonia dosages gradually inhibited AD, leading to decreases in the efficiencies of hydrolysis, acidogenesis and methanogenesis by 3.4-70.8%, 6.0-82.0%, and 4.9-93.8%, respectively. However, biochar addition mitigated this inhibition and facilitated methane production. Biochar enhanced microbial activities related to electron transport and extracellular electron transfer. Moreover, biochar primarily enriched Methanosarcina, which, consequently, upregulated the genes encoding formylmethanofuran dehydrogenase and methenyltetrahydromethanopterin cyclohydrolase for the CO2-reducing methanogenesis pathway by 26.9-40.8%. It is believed that biochar mediated direct interspecies electron transfer between syntrophic partners, thereby enhancing methane production under ammonia stress. Interestingly, biochar removal did not significantly impact the AD performance of the acclimated microbial community. This indicated the pivotal role of biochar in triggering methanogen evolution to mitigate ammonia stress rather than the indispensable function after the enrichment of ammonia-resistance methanogen.

7.
J Environ Manage ; 340: 117976, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121004

RESUMO

Identification, quantification, and control of First-Flush (FF) are considered extremely crucial in urban stormwater management. This paper reviews the methods for FF phenomenon identification, characteristics of pollutants flushes, technologies for FF pollution control, and the relationships among these factors. It further discusses FF quantification methods and optimization of control measures, aiming to reveal directions for future studies on FF management. Results showed that statistical analyses and Runoff Pollutographs Applying Curve (RPAC) fitting modelling of wash-off processes are the most applicable FF identification methods currently available. Furthermore, deep insights into the pollutant mass flushing of roof runoff may be a critical approach to characterizing FF stormwater. Finally, a novel strategy for FF control is established comprising multi-stage objectives, coupling LID/BMPs optimization schemes and Information Feedback (IF) mechanisms, aiming towards its application for the management of urban stormwater at the watershed scale.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Chuva , Movimentos da Água , Poluição Ambiental
8.
Chemosphere ; 330: 138703, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100253

RESUMO

The use of natural agro-industrial materials as suspended fillers (SFs) in floating treatment wetlands (FTWs) to enhance nutrient removal performance has recently been gaining significant attention. However, the knowledge concerning the nutrient removal performance enhancement by different SFs (alone and in mixtures) and the major removal pathways is so far inadequate. The current research, for the first time, carried out a critical analysis using five different natural agro-industrial materials (biochar, zeolite, alum sludge, woodchip, flexible solid packing) as SFs in various FTWs of 20 L microcosm tanks, 450 L outdoor mesocosms, and a field-scale urban pond treating real wastewater over 180 d. The findings demonstrated that the incorporation of SFs in FTWs enhanced the removal performance of total nitrogen (TN) by 20-57% and total phosphorus (TP) by 23-63%. SFs further enhanced macrophyte growth and biomass production, leading to considerable increases in nutrient standing stocks. Although all the hybrid FTWs showed acceptable treatment performances, FTWs set up with mixtures of all five SFs significantly enhanced biofilm formation and enriched the abundances of the microbial community related to nitrification and denitrification processes, supporting the detected excellent N retention. N mass balance assessment demonstrated that nitrification-denitrification was the major N removal pathway in reinforced FTWs, and the high removal efficiency of TP was attributable to the incorporation of SFs into the FTWs. Nutrient removal efficiencies ranked in the following order among the various trials: microcosm scale (TN: 99.3% and TP: 98.4%) > mesocosm scale (TN: 84.0% and TP: 95.0%) > field scale (TN: -15.0-73.7% and TP: -31.5-77.1%). These findings demonstrate that hybrid FTWs could be easily scaled up for the removal of pollutants from eutrophic freshwater systems over the medium term in an environmentally-friendly way in regions with similar environmental conditions. Moreover, it demonstrates hybrid FTW as a novel way of disposing of significant quantities of wastes, showing a win-win means with a huge potential for large-scale application.


Assuntos
Esgotos , Poluentes Químicos da Água , Resíduos Industriais , Biodegradação Ambiental , Áreas Alagadas , Poluentes Químicos da Água/análise , Fósforo/metabolismo , Nitrogênio/análise , Nutrientes , Eliminação de Resíduos Líquidos
9.
J Environ Manage ; 336: 117646, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871447

RESUMO

The transport of excess nutrients into freshwater systems constitutes a serious risk to both water quality and aquatic health. Vegetated buffer zones (VBZs) next to waterways are increasingly used in many parts of the world to successfully intercept and eliminate pollutants and other materials in overland flow, especially in warm or temperate regions. The major processes for the retention of pollutants in VBZ are microbial degradation, infiltration, deposition, filtration, adsorption, degradation, assimilation, etc. The effectiveness of the VBZ relies on several environmental factors, including BZ width, runoff intensity, slope, soil texture, temperature, vegetation type, etc. Among the reported factors, cold weather possesses the most detrimental impact on many of the processes that VBZ are designed to carry out. The freezing temperatures result in ice formation, interrupting biological activity, infiltration and sorption, etc. In the last twenty years, burgeoning research has been carried out on the reduction of diffuse nutrient pollution losses from agricultural lands using VBZ. Nonetheless, a dearth of studies has dealt with the problems and concerns in cold climates, representing an important knowledge gap in this area. In addition, the effectiveness of VBZ in terms of nutrient removal abilities varies from -136% to 100%, a range that reveals the incertitude surrounding the role of VBZ in cold regions. Moreover, frozen soils and plants may release nutrients after undergoing several freeze-thaw cycles followed by runoff events in spring snowmelt. This review suggests that the management and design of VBZ in cold climates needs close examination, and these systems might not frequently serve as a good management approach to decrease nutrient movement.


Assuntos
Poluentes do Solo , Poluentes Químicos da Água , Clima Frio , Agricultura , Poluentes do Solo/análise , Fósforo , Poluentes Químicos da Água/análise , Solo , Nutrientes , Nitrogênio/análise
10.
Sci Total Environ ; 873: 162271, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801410

RESUMO

A major challenge for runoff pollution control lies in the quantification and identification of the first-flush. At present, there is a lack of reasonable theoretical methods to guide engineering practices. To remedy this deficiency, a novel method of cumulative pollutant mass vs. cumulative runoff volume (M(V)) curve simulation is proposed in this study. Subsequently, the first-flush phenomenon was redefined based on the M(V) curve simulation and demonstrate that the first-flush exists until the derivative of the simulated M(V) curve is equal to 1 (Ft' = 1). Consequently, a mathematical model for first-flush quantification was developed. The Root-Mean-Square-Deviation (RMSD) and Pearson's Correlation Coefficient (PCC), as objective functions, were used to evaluate the performance of the model and the Elementary-Effect (EE) method was used to analyze the sensitivity of the parameters. The results indicated the satisfactory accuracy of the M(V) curve simulation and first-flush quantitative mathematical model. The NSE values exceeding 0.8 and 0.938, respectively, were obtained by analyzing 19 rainfall-runoff data for Xi'an, Shaanxi Province, China. The wash-off coefficient "r" was demonstrably the most sensitive factor influencing the model performance. Therefore, interactions between "r" and the other model parameters should be focused on to highlight the overall sensitivities. Overall, this study posits a novel paradigm shift from the traditional dimensionless definition criterion to redefine and quantify first-flush, which has significant implications for urban water environment management.

11.
Sci Total Environ ; 866: 161298, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610619

RESUMO

Existing environmental management regulations and assessment methods can help understand and relieve pollution problems greatly affecting the natural world. However, what is lacking is awareness and targeted recommendations for environmental pollution emergency events (EPEEs). Here we analyzed a total of 2164 EPEEs in China from 2000 to 2021 in terms of annual variations, spatial distributions, phases of regional development, and pollution sources. The findings showed that regional economies can have significant impacts on the occurrence of EPEEs. Regarding the four causes of pollution, the contribution from industrial sources was above 80 %, especially water pollution events, for which it accounted for 84 %. The probability of pollution events specifically relates to regional GDP and it was highest in those provinces with the highest GDP rankings, albeit there were marked differences in the industrial structure. In order to better manage EPEEs, an Environment-Emergency Distance Model (EEDM) is proposed. This model uses the Multidimensional psychological distance to quantitatively evaluate the acceptable public risk level after the occurrence of EPEEs. This method provides a basis for pollution prevention and remediation by visualizing the risk acceptable for the public and provides guidance for sustainable environmental development.

12.
iScience ; 26(1): 105902, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691626

RESUMO

The mechanism of spontaneous FeIII/FeII redox cycling in iron-centered single-atom catalysts (I-SACs) is often overlooked. Consequently, pathways for continuous SO4 ·-/HO⋅ generation during peroxymonosulfate (PMS) activation by I-SACs remain unclear. Herein, the evolution of the iron center and ligand in I-SACs was comprehensively investigated. I-SACs could be considered as a coordination complex created by iron and a heteroatom N-doped carbonaceous ligand. The ligand-field theory could well explain the electronic behavior of the complex, whereby electrons delocalized by the conjugation effect of the ligand were confirmed to be responsible for the FeIII/FeII redox cycle. The possible pyridinic ligand in I-SACs was demonstrably weaker than the pyrrolic ligand in FeIII reduction due to its shielding effect on delocalized π orbitals by local lone-pair electrons. The results of this study significantly advance our understanding of the mechanism of spontaneous FeIII/FeII redox cycling and radical generation pathways in the I-SACs/PMS process.

13.
J Environ Manage ; 325(Pt A): 116478, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272291

RESUMO

The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Águas Residuárias/análise , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Biodegradação Ambiental , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 30(13): 35602-35616, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534258

RESUMO

Blue-green algae (CyanoHABs), photosynthetic bacteria that create a harmful aquatic environment, have been a trending issue on Taihu for over a decade. CyanoHABs adapt to varying climatic changes, which explains why the problem on Taihu still thrives. One major drive that keeps the algae is Sediment Oxygen Demand (SOD). In this paper, seasonal and spatial variations of SOD that contribute immensely to nutrient growth in Lake Taihu were done using the Environmental Fluid Dynamics Code (EFDC). The results were analyzed based on Nitrogenous SOD (NSOD) and Total SOD (TSOD). Summer results ranged from - 0.05754 to - 0.0826 (- 0.75658 to - 0.83902) (g/m2/day) and Winter values ranged from - 0.3022 to - 0.40171 (- 1.34486 to - 1.48856) (g/m2/day) indicate a gradual decrease in NSOD (TSOD) values respectively. Relatively higher values in summer are attributed to warmer surface water which sets up thermal stratification to increase the internal loading of nitrogen. Lower winter values are related to inverse stratification, where lower oxygen concentration decreases the SOD to trigger ammonium accumulation in the water column. NSOD (TSOD) values for Autumn results ranged from - 0.1039 to - 0.24786 (- 0.96251 to - 1.39454) (g/m2/day) and Spring values of - 0.43019 to - 0.35959 (- 1.48297 to - 0.54089) (g/m2/day). Transition seasons (i.e., Autumn and Spring) results are impacted by wind mixing that allows dissolved oxygen and nutrients in the whole water column. However, spring values depict a gradual increase in SOD value attributed to spring turnover and gradual stratification, which decrease nutrient concentration. In contrast, decreasing SOD values in autumn are related to mixing, but temperature decreases tend to increase nutrient concentrations. Carbonaceous sediment oxygen demand (CSOD), due to sulfide oxidation, presents high values from the difference between TSOD and NSOD. Based on the high values of CSOD, it is highly recommended that more research on eutrophic Taihu lakes would consider delving into CSOD.


Assuntos
Monitoramento Ambiental , Fósforo , Fósforo/análise , Lagos , Água , China , Eutrofização , Nitrogênio/análise , Estações do Ano , Oxigênio
15.
Sci Total Environ ; 863: 160921, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36535486

RESUMO

The release of nutrients back into the water column due to macrophyte litter decay could offset the benefits of nutrient removal by hydrophytes within urban streams. However, the influence of this internal nutrient cycling on the overlying water quality and bacterial community structure is still an open question. Hence, litter decomposition trials using six hydrophytes, Typha latifolia (TL), Phragmites australis (PAU), Hydrilla verticillata (HV), Oenanthe javanica (OJ), Myriophyllum aquaticum (MA), and Potamogeton crispus (PC), were performed using the litterbag approach to mimic a 150-day plant litter decay in sediment-water systems. Field assessment using simple in/out mass balances and uptake by plant species was carried out to show the potential for phytoremediation and its mechanisms. Results from two years of monitoring (2020-2021) indicated mean total nitrogen (TN) retention efficiencies of 7.2-60.14 % and 9.5-55.6 % for total phosphorus (TP) in the studied vegetated urban streams. Nutrient retention efficiencies showed temporal variations, which depended on seasonal temperature. Mass balance analysis indicated that macrophyte assimilation, sediment adsorption, and microbial transformation accounted for 10.31-41.74 %, 0.84-3.00 %, and 6.92-48.24 % removal of the inlet TN loading, respectively. Hydrophyte detritus decay induced alterations in physicochemical parameters while significantly increasing the N and P levels in the overlying water and sediment. Decay rates varied among macrophytes in the order of HV (0.00436 g day-1) > MA (0.00284 g day-1) > PC (0.00251 g day-1) > OJ (0.00135 g day-1) > TL (0.00095 g day-1) > PAU (0.00057 g day-1). 16S rRNA gene sequencing analysis showed an increase in microbial species richness and diversity in the early phase of litter decay. The abundances of denitrification (nirS and nirK) and nitrification (AOA and AOB) genes also increased in the early stage and then decreased during the decay process. Results of this study conducted in seven urban streams in northern China demonstrate the direct effects of hydrophytes in encouraging nutrient transformation and stream self-purification. Results also demonstrate that macrophyte detritus decay could drive not only the nutrient conversions but also the microbial community structure and activities in sediment-water systems. Consequently, to manage internal sources and conversions of nutrients, hydrophytic detritus (e.g., floating/submerged macrophytes) must be suppressed and harvested.


Assuntos
Hydrocharitaceae , Microbiota , Rios , RNA Ribossômico 16S , Plantas , Nutrientes/análise , Nitrogênio/análise , Fósforo/análise
16.
Chemosphere ; 307(Pt 1): 135701, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35842049

RESUMO

This study demonstrates the enantioselective removal dynamics and mechanisms of the chiral herbicide metolachlor in a hydroponic system of Phragmites australis. It presents the first work to elucidate plant-microbial driven enantioselective degradation processes of chiral chemicals. The results showed a degradation efficiency of up to 95.07 ± 2.81% in the hydroponic system driven by a notably high degradation rate constant of 0.086 d-1. P. australis was demonstrated to rapidly increase the contribution of biodegradation pathways in the hydroponic system to 82.21 ± 4.81% within 4 d with an enantiomeric fraction (EF) drop to 0.26 ± 0.02 to favour the enantioselective degradation of S-Metolachlor (kS-Metolachlor = 0.568 d-1 and kR-Metolachlor = 0.147 d-1). Comparatively, the biodegradation pathways in the control constituted less than 25%, with an EF value of circa 0.5. However, the enantioselective biodegradation pathways exhibited complete reversal after about 4 d to favour R-Metolachlor. Plants promoted the degradation of R-Metolachlor, evidenced by an increase in EF to 0.59 ± 0.03. Nonetheless, metolachlor showed an inhibitory effect on plants reflected by the reduction of plant growth rate, chlorophyll content, and electron transport rate to -7.85 ± 1.52%, 1.33 ± 0.43 mg g-1, 4.03 ± 1.33 µmol (m2 s)-1, respectively. However, rhizosphere microorganisms aided plants to catalyze excessive reactive oxygen species production by the antioxidant enzymes to protect plants from oxidative damage and restore their physiological activities. High-throughput analysis of microbial communities demonstrated the enrichment of Massilia (40.63%) and Pseudomonas (8.16%) in the initial stage to promote the rapid degradation of S-Metolachlor. By contrast, the proliferation of Brevundimonas (32.29%) and Pseudarthrobacter (11.03%) in the terminal stage was closely associated with the degradation of R-Metolachlor. Moreover, as symbiotic bacteria of plants, these bacteria aided plants protection from reactive oxygen damages and promoted the recovery of plant metabolic functions and photosynthesis. Overall, these results demonstrate biodegradation mediated by plant-microbe mechanisms as the main driver for the enantioselective degradation of metolachlor in hydroponic systems.


Assuntos
Herbicidas , Acetamidas , Antioxidantes , Biodegradação Ambiental , Clorofila , Herbicidas/química , Hidroponia , Oxigênio , Plantas/metabolismo , Espécies Reativas de Oxigênio
17.
Bioresour Technol ; 360: 127545, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35777637

RESUMO

Bidirectional cross flow wetlands with different plant species were set to investigate seasonal variation in radial oxygen loss (ROL) and its effects on COD and NH4+-N removal. Findings demonstrated a strong seasonal effect on the rate of ROL, with Arundo donax var.versicolor showing the highest ROL of 2.99 µmol·h-1·g-1. Additionally, ROL showed strong positive correlations with plant total biomass (P < 0.01), aboveground biomass (P < 0.01), height, maximum root length (P < 0.01), root porosity (P < 0.01), and removal efficiency of COD and NH4+-N (P < 0.01). Furthermore, high-throughput sequencing analysis of substrate samples from three wetland units planted with Thalia dealbata, Canna indica and Arundo donax var. versicolor revealedProteobacteria as the predominant rhizospheric phylum. Relative abundance of Alpha- and Gamma-Proteobacteria were higher in the Arundo donax var.versicolor samples due to its higher oxygen transport capacity. These results demonstrate that root properties are important determinants for selecting appropriate plants for constructed wetland.


Assuntos
Oxigênio , Áreas Alagadas , Biomassa , Nitrogênio/análise , Nutrientes , Plantas , Poaceae/química , Eliminação de Resíduos Líquidos/métodos
18.
Sci Total Environ ; 845: 157300, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842169

RESUMO

Free water surface flow (FWS) constructed wetlands (CWs) have been broadly applied for polishing secondary treated effluents. Dissolved organic matter derived from FWS CWs (WDOM) plays key roles in contaminants transformations. Conversely, photodegradation could shape the quantity and quality of WDOM, thereby affecting its roles in the photolysis of organic micropollutants (OMPs). Nevertheless, whether and how solar irradiation-induced photodegradation modify the properties of WDOM, and the effects of WDOM on the photodegradation of OMPs remain unclear. This study elucidates the photochemical behavior of two WDOM isolated from field-scale FWS CWs for effluent polishing under simulated sunlight irradiation using spectroscopic tools and high-resolution mass spectra. Furthermore, the roles of WDOM in the photodegradation of Bisphenol A (BPA), as a representative endocrine-disrupting compound (EDC), were comprehensively investigated. Solar irradiation was demonstrated to lower the molecular weight and aromaticity of WDOM, as well as weaken its light absorption. Ultrahigh-resolution mass spectra further confirmed that aromatic and unsaturated structures were susceptible to solar irradiation-induced photodegradation reactions. Subsequently, less aromatic and more saturated structures eventually formed under sunlight irradiation, consistent with the result from spectroscopic characterization. The reactive species produced from WDOM significantly enhanced the photodegradation of BPA with the kobs noticeably increasing 4-fold compared with the kobs for direct photolysis. Additionally, 3WDOM* was identified as the dominant reactive species leading to the photolysis of BPA in the presence of WDOM. These findings improve understanding of the phototransformation behavior of WDOM under sunlight irradiation and the roles that WDOM plays in the photochemical fate of coexisting OMPs in CWs treatment systems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Compostos Benzidrílicos , Matéria Orgânica Dissolvida , Fenóis , Fotólise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Áreas Alagadas
19.
Sci Total Environ ; 843: 157039, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777569

RESUMO

Constructed wetlands (CWs) are widely used for non-point source pollution control and water environmental quality improvement. Though it is effective in water quality improvement under most conditions, the overall impacts on the ecological environment in terms of greenhouse gases (GHGs) emissions is a growing concern. Besides, large area requirement has limited further applications of the technology in urban areas. A novel assessment tool of integrating grey water footprint into the ecological footprint framework is established for the assessment of pilot-scale CWs. Findings are compared with a natural riparian wetland adjacent to the researched CWs which were monitored simultaneously. Results demonstrated the CWs had relatively good water quality polishing performance, especially for nitrogen removal. Nonetheless, a large amount of CO2 and some CH4 and N2O emissions were recorded. Meanwhile, a substantial amount of CO2 was also sequestrated by wetland plants via photosynthesis. The strong reducing environment of the CWs inhibited CO2 and N2O generation to a great extent. Calculation of all gaseous emissions and sequestration in CO2 equivalents demonstrated that CWs are an efficient carbon sink. By contrast, the natural wetland was a carbon source because of the high emission of CO2 and N2O under its weak reducing environment conditions and low gross primary production. The carbon footprints of the constructed and natural wetlands were -24.24 and 12.99 gha respectively. Modified ecological footprint values were determined by integrating the carbon footprint, water footprint and build-up lands footprint, and a value of -24.36 gha was obtained for the CWs and 12.99 gha for the natural wetlands. The results indicated that the CWs had substantial beneficial impacts on the ecological environment. On account of the multifunctional service values provided by the CWs, a typical paradigm for water pollution remediation and carbon sequestration was presented for ecological and environmental governance, especially for riparian areas.


Assuntos
Dióxido de Carbono , Áreas Alagadas , Conservação dos Recursos Naturais , Política Ambiental , Metano , Óxido Nitroso
20.
Sci Total Environ ; 842: 156827, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750173

RESUMO

The performance of different suspended fillers (zeolite, drinking water treatment residual, biochar, woodchip and stereo-elastic packing) and their combinations in treating municipal wastewater in ecological floating beds (Eco-FBs) planted with Myriophyllum aquaticum was assessed. Six sets of enhanced Eco-FBs were developed to assess the individual and synergistic effects of combinations of the various fillers and microorganisms on nutrient elimination. The results demonstrated mean TN, NH4-N, TP and COD purification efficiencies of 99.2 ±â€¯11.2 %, 99.82 ±â€¯16.4 %, 98.3 ±â€¯14.3 %, and 96.1 ±â€¯12.3 %, respectively in the Eco-FBs strengthened with all five fillers. The corresponding purification rates were 0.89 ±â€¯0.14, 0.75 ±â€¯0.12, 0.08 ±â€¯0.016, and 7.05 ±â€¯1.09 g m-2 d-1, which were 2-3 times higher than those of the conventional Eco-FB system. High-throughput sequencing showed that some genera related to nutrient transformation, including Proteobacteria (24.13-51.95 %), followed by Chloroflexi (5.64-25.01 %), Planctomycetes (8.48-14.43 %) and Acidobacteria (2.29-11.65 %), were abundantly enriched in the strengthened Eco-FBs. Enhancement of the Eco-FBs with various fillers significantly increased microbial species richness and diversity as demonstrated by Chao1, Shannon and Simpson's indexes, particularly when all the five fillers were combined. Therefore, introducing suspended fillers into Eco-FBs is an appropriate approach for improving nutrient elimination from municipal wastewater.


Assuntos
Saxifragales , Purificação da Água , Nitrogênio/análise , Nutrientes , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...